How to do a two-sided hypothesis test for two sample means (in R)
Task
If we have two samples,
Related tasks:
- How to compute a confidence interval for a population mean
- How to do a two-sided hypothesis test for a sample mean
- How to do a one-way analysis of variance (ANOVA)
- How to do a one-sided hypothesis test for two sample means
- How to do a hypothesis test for a mean difference (matched pairs)
- How to do a hypothesis test for a population proportion
Solution
If we call the mean of the first sample
1
2
3
4
5
6
7
8
# Replace these first three lines with the values from your situation.
alpha <- 0.10
sample1 <- c( 6, 9, 7, 10, 10, 9 )
sample2 <- c( 12, 14, 10, 17, 9 )
# Run a one-sample t-test and print out alpha, the p value,
# and whether the comparison says to reject the null hypothesis.
t.test( sample1, sample2, conf.level=1-alpha )
Welch Two Sample t-test
data: sample1 and sample2
t = -2.4617, df = 5.7201, p-value = 0.05097
alternative hypothesis: true difference in means is not equal to 0
90 percent confidence interval:
-7.0057683 -0.7942317
sample estimates:
mean of x mean of y
8.5 12.4
Although we can deduce the answer to our question from the above output,
by comparing the
1
2
3
# Is there enough evidence to reject the null hypothesis?
result <- t.test( sample1, sample2, conf.level=1-alpha )
result$p.value < alpha
[1] TRUE
In this case, the samples give us enough evidence to reject the null hypothesis
at the
Here we did not assume that the two samples had equal variance.
If in your case they do, you can pass the parameter var.equal=TRUE
to t.test
.
Content last modified on 24 July 2023.
See a problem? Tell us or edit the source.
Contributed by Nathan Carter (ncarter@bentley.edu)