How to compute a confidence interval for the expected value of a response variable (in R)
Task
If we have a simple linear regression model, $y = \beta_0 + \beta_1x + \epsilon$, where $\epsilon$ is some random error, then given any $x$ input, $y$ can be veiwed as a random variable because of $\epsilon$. Let’s consider its expected value. How do we construct a confidence interval for that expected value, given a value for the predictor $x$?
Related tasks:
- How to compute a confidence interval for a mean difference (matched pairs)
- How to compute a confidence interval for a regression coefficient
- How to compute a confidence interval for a population mean
- How to compute a confidence interval for a single population variance
- How to compute a confidence interval for the difference between two means when both population variances are known
- How to compute a confidence interval for the difference between two means when population variances are unknown
- How to compute a confidence interval for the difference between two proportions
- How to compute a confidence interval for the population proportion
- How to compute a confidence interval for the ratio of two population variances
Solution
Let’s assume that you already have a linear model. We construct an example one here from some fabricated data.
1
2
3
4
# Make the linear model
x <- c(34, 9, 78, 60, 22, 45, 83, 59, 25)
y <- c(126, 347, 298, 309, 450, 187, 266, 385, 400)
model <- lm(y ~ x)
Construct a data frame containing just one entry, the value of the independent variable for which you want to compute the confidence interval.
That data frame can then be passed to R’s predict
function to get a confidence interval for the expected value of $y$.
1
2
3
4
# Use your chosen value of x below:
data <- data.frame(x=40)
# Compute the confidence interval for y:
predict(model, data, interval="confidence", level=0.95) # or choose a different confidence level; here we use 0.95
1
2
fit lwr upr
1 313.7217 226.648 400.7954
Our 95% confidence interval is $[226.648, 400.7954]$. We can be 95% confident that the true average value of $y$, given that $x$ is 40, is between 226.648 and 400.7954.
Content last modified on 24 July 2023.
See a problem? Tell us or edit the source.
Contributed by Elizabeth Czarniak (CZARNIA_ELIZ@bentley.edu)